
Distributed and Parallel Databases, Volume 30, Issue 5-6, pp 401-414, Springer, 2012 manuscript No.
(will be inserted by the editor)

High-Throughput Query Scheduling with Spatial Clustering

based on Distributed Exponential Moving Average (EMA)

Beomseok Nam · Deukyeon Hwang ·

Jinwoong Kim · Minho Shin∗

June 29, 2012

Abstract In distributed scientific query processing systems, leveraging dis-

tributed cached data is becoming more important. In such systems, a front-end

query scheduler distributes queries among many application servers rather

than processing queries in a few high-performance workstations. Although

many query scheduling policies exist such as round-robin and load-monitoring,

they are not sophisticated enough to exploit cached results as well as balance

the workload. Efforts were made to improve the query processing perfor-

mance using statistical methods such as exponential moving average. How-

ever, existing methods have limitations for certain query patterns: queries

with hotspots, or dynamic query distributions. In this paper, we propose novel

query scheduling policies that take into account both the contents of dis-

tributed caching infrastructure and the load balance among the servers. Our

experiments show that the proposed query scheduling policies outperform ex-

isting policies by producing better query plans in terms of load balance and

cache-hit ratio.

1 Introduction

In many scientific disciplines, computational scientists and engineers gener-

ate and analyze enormous amounts of datasets to better understand complex

physical phenomena. Efficient storage, retrieval, and processing of such large

Beomseok Nam · Deukyeon Hwang · Jinwoong Kim are at Electrical and Computer Engineering, Ulsan

National Inst. of Science and Technology, Ulsan, 689-798, Korea · Minho Shin (corresponding author) is

at Dept. of Computer Engineering, Myongji University, Yongin, Gyonggido, Korea.

This research was supported by the 1.100027.01 Research Fund of the UNIST(Ulsan National In-

stitute of Science and Technology) and 2.110147.01 National Research Foundation of Korea. · This work

was also supported by 2011 Research Fund of Myongji University. This manuscript is for the purpose of

self-archiving, and the final publication is available at link.springer.com.

2 Beomseok Nam et al.

scientific datasets are now major challenges that need to be addressed for sci-

entific analysis applications. Distributed and parallel query processing sys-

tems have been used to solve large and complicated scientific problems as its

parallelism enabled substantial gain in performance.

For maximum parallelism, load balancing must be achieved so that all

users’ tasks are partitioned and evenly distributed across parallel servers and

keep the servers busy all of the time. However, load balancing in modern het-

erogeneous cluster systems is not an easy task; even if the number of tasks is

well balanced, it does not imply that the system throughput is maximized. On

the other hand, for computationally expensive queries, cache-hit ratio also

plays an important role in reducing the query response time. However, tradi-

tional scheduling policies such as round-robin ignores the cache-hit ratio in

distributed servers, and the data in the caches is rarely reused. Therefore, a

query scheduling policy should take into account both load balancing and the

reuse of cache contents. For example, if a query scheduler knows the work-

load and the cache content of each server, the scheduler can maximize the

parallelism and the cache-hit ratio.

A challenge of a cache-aware scheduling policy is that the scheduling

server needs to know the content of each cache, which causes significant com-

munication overhead between the scheduler and the application servers. The

scheduling algorithm also needs to be lightweight so that it doesn’t cause

bottleneck at the front-end scheduler.

Another difficulty with a cache-aware query scheduling policy is that high

cache-hit ratio may not result in high system throughput because it may hurt

load balance. Suppose a query scheduler knows the cache content of an ap-

plication server and those contents are popular. So it forwards most subse-

quent queries to the application server to improve cache-hit ratio. With proper

caching policy, those popular data will remain in the cache for an extended

time period, making the response time for those queries small. However, with

such popular queries (called hotspot), it is difficult to maintain the load bal-

ance among the servers, degrading query response time. For example, if the

server with popular data in the cache is too much busier than other servers,

the waiting time in the busy server can be higher than the processing time by

an idle server without the data in the cache. In such a case, queries should be

forwarded to an idle server. This can improve system throughput and reduce

query response time even if it decreases cache-hit ratio.

In a prior work [9], a query scheduling policy was designed to achieve

both load balance and cache reuse. The policy employs a statistical predic-

tion method called Exponential Moving Average (EMA). However, the pol-

icy fails to perform well for certain cases; it fails to balance the load when the

query distribution has hotspots, and it fails to adapt to query patterns when

the query distribution changes frequently. In this paper, we propose two novel

Title Suppressed Due to Excessive Length 3

Fig. 1 Architecture of Distributed Query Processing Framework

scheduling policies that overcome the limitations of the prior work against

hotspots and dynamic query distributions.

The first proposed policy takes into account the recent workload of the

application servers while assigning similar queries to the same server for

cache-hit ratio. The recent workload of each application server is estimated

by the front-end scheduler without any communication overhead between the

scheduler and the application servers. The second policy employs additional

dynamics into the policy so that it adapts quickly to the change of the query

distribution and balances the load in a global manner. More specifically, for

each query we change the state of the most idle server as well as that of the ap-

plication server that is assigned the query. Such change in the idle server not

only draws the idle server out of its dormant state and assigns more queries

to the server, but it can also make more servers to converge quickly to new

hotspots.

We ran experiments with both synthetic and realistic 2D image query

workloads. The experimental results show that the proposed scheduling poli-

cies quickly adapt to dynamic query distribution changes, and outperform the

load-based scheduling policy by orders of magnitude for both static and dy-

namic query patterns.

The rest of the paper is organized as follows. In Section 2 we formulate

the distributed query scheduling problem, and in Section 3 we describe the

rational behind EMA-based scheduling techniques and propose new schedul-

ing policies. Experimental settings and results are discussed in Section 4, and

related work is given in Section 5. We conclude in Section 6.

2 Semantic Caching in Distributed Query Processing Framework

Figure 1 shows the architecture of distributed and parallel query process-

ing middleware for scientific data analysis applications. This system aims

for linear speed-up and scale-up via load balancing, processing queries in

parallel, and increasing cache-hit ratio in distributed semantic caching infras-

tructure [1]. The front-end server, called scheduler, interacts with clients for

4 Beomseok Nam et al.

receiving queries, and determines which back-end application servers will

process incoming queries. The back-end application servers run application-

specific user-defined operators that retrieve raw datasets from the storage sys-

tems and process incoming queries on cluster nodes.

Many scientific data analysis applications are different in terms of the raw

dataset type and the query type. However, they have common features in the

overall query processing flow and many scientific datasets are represented in a

multi-dimensional space. One of the most common access types into scientific

datasets is multidimensional range query. When a query is forwarded to an

application server, the application server searches its semantic cache to find

out if the given range query overlaps the range of cached objects to reuse.

If no cached object is found in the semantic cache, it processes the query

from scratch. The goal of such a system is to maximize the query processing

throughput and minimize the query response time.

3 EMA-based Scheduling Policies

In this section, we describe how one can employ the statistical prediction

method Exponential Moving Average (EMA) for clustering incoming queries

around application servers, achieving both load balance and high cache-hit ra-

tio. We first describe the basic algorithm, called DEMA (Distributed EMA) [9],

then propose improved algorithms that overcome the drawbacks of DEMA.

3.1 Distributed EMA scheduling

Exponential moving average (EMA) is a well-known statistical method to ob-

tain long-term trends and smooth out short-term fluctuations; applications are

found in finance such as predicting stock prices and trading volumes [6]. In

distributed query scheduling policies, the EMA computes a weighted aver-

age of all the past cached data by assigning exponentially more weights to

recent data. As the cached data is represented by multi-dimensional coordi-

nates, we used the multi-dimentional center point of the data to calculate the

EMA value.

Let p[t] be the multidimensional center point of cached object at time t > 0

and EMA[t] be the EMA value at time t after adding p[t] into the cache. Given

the smoothing factor α ∈ (0,1) and the previous average EMA[t−1], EMA[t]
can be calculated incrementally by

EMA[t] = α · p[t]+ (1−α) ·EMA[t−1] (1)

The smoothing factor α determines the degree of weighing decay towards the

past. For example, α close to 1 drastically decreases the weight on the past

data (short-tailed) and α close to 0 gradually decreases (long-tailed).

Title Suppressed Due to Excessive Length 5

EMA1

Query qQuery q

EMA2

EMA33

EMA4

EMA5

Fig. 2 DEMA scheduler calculates the Euclidean distance between EMA points and an incoming query,

and assigns the query to the server B whose EMA point is closest.

In the distributed caching infrastructure, we employ as many EMA points

as the application servers to determine which server is to be assigned each

query and how the assignment adapts to the dynamic change of the query

distribution.

The EMA-based scheduling algorithms work in three steps.

1. Initialization. Suppose there are n application servers (which processes

queries) and one scheduler (which assigns each incoming query to an ap-

plication server). For initialization, the scheduler chooses n EMA variables

EMA1,EMA2, . . . ,EMAn uniformly at random, where EMAi is associated

with the ith application server (denoted by server i).

2. Assignment. For an incoming query q, the scheduler computes the cen-

ter of the query, also denoted by q, then finds the closest EMA point EMAi∗

to q (in terms of Euclidean distance). Query q is then forwarded to server i∗.

3. EMA Update. Once q is assigned to server i∗, the scheduler updates

EMAi∗ by

EMAi∗ = αq+(1−α)EMAi∗. (2)

The complexity of DEMA scheduling is O(logn) on average case where

n is the number of application servers. This is so when we employ a nearest

neighbor search algorithm [3] for finding the closest application server. The

same is true in all query dimensions if the dimension is considered constant.

For simplicity, however, we provide an O(n) algorithm in a later section (see

Algorithm 1), which performs linear search.

Figure 2 visualizes the EMA-based scheduling for two dimensional queries.

In the figure, EMA1 . . .EMA5 represent the EMA values of the five applica-

tion servers. The boundaries represent the Voronoi diagram of the EMA val-

ues, where points on the boundary has the same distance to the closest EMA

values. The scheduler assigns each query to the server whose Voronoi cell

contains the center of the query, thus called Voronoi assignment model [4].

6 Beomseok Nam et al.

For example, the query q in the figure is assigned to server 3. By Equation 2,

EMA3 moves a little toward q, which also shifts the boundary of the cell to-

ward the same direction. An observation is that each EMA has a tendency to

position at the center of its cell. For example, EMA4 in the figure is located at

the lower right corner of the cell. Thus more queries will arrive to the upper

left side of the EMA in the cell than to the lower right. Therefore, the EMA4

is likely to slide to upper left. This movement will also move its borders to

the upper left, making EMA2 and EMA3 smaller and EMA5 larger. This prop-

erty hints at the mechanism of DEMA for load balancing; DEMA scheduling

algorithm has a tendency to make a larger cell (EMA2) smaller and a smaller

cell (EMA5) larger.

However, the Voronoi assignment model doesn’t balance server-load well

in certain circumstances. If all the subsequent queries land on a single Voronoi

cell, only the corresponding single application server will process all of them.

If a popular query region suddenly moves to a distant location where only a

few EMA points are located, DEMA scheduling policy may need substantial

amount of time to adjust the distribution of EMA points accordingly. This

delay prevents the balanced query distribution among the servers for an ex-

tended period of time.

The following describes how our new scheduling policies address these

limitations of DEMA.

1. Instead of picking up a bisector line as the query boundary of two neigh-

boring application servers, we choose the boundary according to the work-

load of two servers. The underlying idea of this approach is that a server

that has more pending queries should process less number of subsequent

queries. In this variant, the boundaries of EMA points are chosen consid-

ering the number of recently assigned queries.

2. Instead of updating one EMA point per query, we update multiple EMA

points including the closest one. The underlying idea of this approach is

to quickly adapt the EMA distribution to new query patterns.

3.2 Balanced Exponential Moving Average (BEMA)

The balanced DEMA policy (BEMA in short) employs a novel metric to rep-

resent the effective distance between the query and the application server. The

load-aware Euclidean distance not only measures the Euclidean distance be-

tween the query point and the EMA point, it also takes into account the cur-

rent load of the server. Formally, the load-aware Euclidean distance is defined

as the Euclidean distance multiplied by the estimated workload of the server.

Algorithm 1 describes the BEMA algorithm in detail. In line 10, the al-

gorithm uses the variable WeightedDistance for the load-aware Euclidean

Title Suppressed Due to Excessive Length 7

Algorithm 1

BEMA Algorithm
1: INPUT: a client query Q

2: MinDistance←MaxNum

3: for s = 1 to NumberO f ApplicationServers do

4: if EMA[s] is not initialized then

5: forward query Q to server s.

6: EMA[s]← Q;

7: return;

8: else

9: Load[s]← GetCurrentLoadO f Server(s);
10: WeightedDistance← EuclideanDistance(EMA[s],Q) ·Load[s];
11: if WeightedDistance < MinDistance then

12: SelectedServer ← s

13: MinDistance←WeightedDistance

14: end if

15: end if

16: end for

17: forward query Q to SelectedServer.

18: EMA[SelectedServer]← (α ·Q)+(1−α) ·EMA[SelectedServer]

distance between the server and the query. The algorithm obtains the server

workload (Load[s]) using the function GetCurrentLoadO f Server(·). To mea-

sure the server workload, various metrics can be employed: size of query

wait queue, disk read rate, and thread pool utilization, for instance. However,

collection of such information requires additional communication with the

servers. Instead of collecting performance metrics from the server, the sched-

uler estimates the server workload using query assignment count, which is

the number of queries assigned to the server among the recent N queries. The

query assignment count can be a good estimator for the wait-queue size when

the queries are reasonably homogeneous. The benefit of this metric is that

the scheduler can measure it without any communication with the application

servers.

Clustering property of BEMA: As a query is assigned to an application

server if it is close enough to the EMA point of the server, only similar

queries (i.e., close to each other in the query space) are assigned to the same

server. This clustering effect promotes the reuse of cache content, especially

for range queries because similar range queries will overlap each other. This

effect of BEMA promotes cache-hit ratio.

Load Balancing property of BEMA: Another important feature of BEMA

scheduling algorithm is load balancing; each query can be assigned to one of

the application servers with equal probability, leveling the workloads of the

application servers.

The motivation of Balanced EMA (BEMA) algorithm is to assign more

queries to less busy servers. The DEMA scheduling policy doesn’t consider

the workloads of the adjacent servers; it assigns the query to the server whose

8 Beomseok Nam et al.

New Query q

EMAk EMAk+ 1

Bound(k,k+ 1) Bound(k+ 1,k) L oad

= 15

L oadEMA1

15
5

(a) DEMA Scheduling in 1D Problem Space

1 3
New Query q

27

L oad

= 5
1

EMA2
EMA3

1 3

EMAk EMAk+ 1

Bound(k,k+ 1) Bound(k+ 1,k)
L oad

= 14

EMA4

L oad = 30 L oad = 10

(b) BEMA Scheduling in 1D Problem Space (c) Apollonius Circle Boundaries of BEMA

Fig. 3 BEMA scheduler assigns the query to the server whose Apollonius circle encloses the query point.

EMA point is the closest regardless of its current workload (see Figure 3-(a)).

On the contrary, BEMA multiplies the query assignment count of the server,

representing the workload of the server, to the Euclidean distance between

the query and the EMA of the server. In Figure 3-(b), the load of server k is

3 times higher than that of server k+ 1. In the weighted distance, the server

k becomes much farther from the query than server k+1, effectively shifting

the decision boundary toward the server k. Thus the query q is assigned to

server k+1, balancing the workload. In general, the BEMA scheduling policy

chooses a boundary between EMAi and EMA j such that

Bound(i, j) : Bound(j, i) = Load(j) : Load(i)

where Bound(i,j) is the distance between EMAi and the boundary to EMA j,

and Load(i) is the query assignment count.

Ideally, we want to asign the same number of queries to each application

server. DEMA scheduling policy fails to achieve load balancing if the query

distribution has a hot spot, or if the query distribution changes frequently.

In EMA-based scheduling policies, the probability of assigning a new query

to a specific server equals to the probability of a new query belonging to

the region of the server. The BEMA scheduling policy defines the regions

by multiplicatively weighted Voronoi diagram whose boundaries are defined

by Apollonius circles (Figure 3-(c)). The BEMA scheduling policy adjusts

the Apollonius circular region size reciprocal to server load. For example,

in Figure 3-(c) server 2 (EMA2)’s load is about 3 times lower than server 1

(EMA1). Hence the region of server 1 becomes much smaller than that of

server 2.

Figure 4 illustrates how BEMA converges to load balance in the view of

min-max optimization. For brevity, we assume linear query space and uniform

query distribution. Suppose server 2 (with EMA value of E2) is a local maxi-

mum in terms of the workload; Load(2)> Load(1) and Load(2)> Load(3).
By definition, boundary m1 is closer to E2 and m2 is closer to E2, making

Title Suppressed Due to Excessive Length 9

R
2

R
1 R

3

l1
r1

r2 r3 r4 l4

1 R
3

E2
1 l4

Load(2) > Load(1)
Load(2) > Load(3)

Fig. 4 An example of a local maximum server.

r2 < r1 and r3 < r4. Therefore, r2+ r3 < r1+ r4, i.e., the probability of a

query being assigned to server 2 is less than being assigned to either server

1 or sever 3. This will decrease the load of server 2, minimizing the local

maximum load.

3.3 Moving Multiple EMA for Better Load Balancing (MMEMA)

Suppose that queries suddenly start to land inside the boundary of a single ap-

plication server’s Voronoi cell. By DEMA, all subsequent queries will be as-

signed to the hotspot server. Although most queries will find the query results

in the cache (i.e., cache-hit ratio close to 1), the server will be overwhelmed

by the burden of processing all the queries while other servers remain idle.

To address this problem, BEMA makes the hotspot Voronoi cell shrink very

quickly and redistribute the load to adjacent servers. This property of BEMA

also makes the EMA distribution quickly adapt to the change of query distri-

bution.

Another approach to the problem is to move another server in addition

to the closest one. Moving an additional EMA point toward the query helps

to lessen the burden of the hotspot server; the ‘supporting server’ quickly

approaches to the hotspot (and it moves more quickly if it is farther from the

hotspot, by EMA definition), then takes over part of the hotspot cell.

We can choose the supporting server at random, in a round-robin fashion,

the farthest to the query, or we can move the EMA point of the most idle

server. In this work, we chose the most idle server as the supporting server.

The benefit of moving the most idle server is twofolds. Moving the most idle

server toward the hotspot maximizes the effect of load balancing. Another

benefit is that if a new hotspot suddenly starts to form in a non-hotspot area,

both the closest EMA point and the most idle EMA point reaches to the new

hotspot area, dividing the hotspot burden into two. This effect alleviates the

hotspot problem much better than the case when only one EMA is responsible

for the hotspot. Keeping track of the most idle server is also computationally

lightweight if we keep the same load metric as in BEMA. The most idle server

will not be changed unless it receives more queries while it travels toward

10 Beomseok Nam et al.

the hotspot. During the move, the most idle server may arrive at a different

hotspot and another server may become the most idle server.

4 Experiments

4.1 Experimental Setup

Performance improvements from query planning and scheduling highly de-

pends on the nature of the application, the system characteristics, and the

characteristics of the workload. In order to show the magnitude of improve-

ments by the proposed scheduling policies, we evaluated various scheduling

policies using different query distributions and realistic query workloads.

In order to evaluate the performance of the EMA-based scheduling poli-

cies under different query distributions, we generated synthetic queries that

follow uniform, normal, and Zipf’s probability distributions. In addition to the

theoretic probability distributions, we employed a variation of the Customer

Behavior Model Graph (CBMG) technique to generate more realistic query

workloads [8]. In this model, the first query in a batch specifies a geograph-

ical region and the subsequent queries simulate user behavior based on the

following operations: a new point of interest, spatial movement (scanning),

and resolution increase or decrease.

We have measured the performance of EMA-based scheduling policies

on 41 Linux cluster machines, and also implemented a simulator to evaluate

the performance of a larger number of machines. The machines are equipped

with dual Quad-Core Xeon E5506 2.13 GHz CPUs and 12 GB of memory per

node, and they are connected by Gigabit switched Ethernet. The datasets are

stored in NFS mounted file system so that each server has access to the entire

raw dataset. Two dimensional digital pathology image datasets were used to

evaluate the query scheduling policies The images were partitioned into sub-

images and the average query processing time to read a single sub-image is

about 200 ms.

4.2 Experimental Results

In addition to EMA-based scheduling policies (i.e., DEMA, BEMA, and MMEMA),

we also evaluated the Load-based scheduling policy for comparison. The

Load-based scheduling policy (denoted by Load) assigns each query to the

least busy server among all the servers to balance the load, but it does not

consider cache content. As we will show, the EMA-based scheduling policies

consistently outperform Load-based scheduling policy due to cache hit ratio.

Figure 5 and 6 show the change of the average query response time, cache-

hit ratio, and load balance as the number of application servers increases. The

Title Suppressed Due to Excessive Length 11

 60000
 40000

 10000

 4000

 1000

 320

 160

 80

 40

 10
403530252015105

T
im

e
(m

se
c)

Number of Servers

AVG Query Response Time (CBMG)

Load
DEMA
BEMA

MMEMA

(a) Query Response Time

 0

 20

 40

 60

 80

 100

403530252015105

P
er

ce
n
ta

g
e

(%
)

Number of Servers

Cache Hit Ratio (CBMG)

Load
DEMA
BEMA

MMEMA

(b) Cache Hit Ratio

 0

 200

 400

 600

 800

 1000

 1200

 1400

40353025201510

st
d
d
ev

Number of Servers

Load Balance (CBMG)
Load

DEMA
BEMA

MMEMA

(c) Load Balance

Fig. 5 CBMG Query Distribution (# of App. Servers)

query response time is defined as the time between when the scheduler re-

ceives the query and when the application server completes the query pro-

cessing. This time includes the queueing delay in the application server as

well as the actual processing time. Each application server has an LRU cache

whose size can hold up to 100 query results.

In Figure 5(a), the query response time decreases as the number of servers

increase. Additional servers provide more cache space to the distributed query

system. Hence more intelligent scheduling algorithms that take into account

the locality between queries better utilize the distributed large cache space.

Figure 5(c) shows the change of load balance measured by the standard devi-

ation of the number of assigned queries. BEMA shows superior load balanc-

ing behavior compared to other EMA-based scheduling policies with CBMG

distribution. Although the BEMA scheduling policy shows similar cache-

hit ratio with the DEMA scheduling policy (Figure 5(b)), BEMA shows the

smallest query response time with CBMG distribution because it outperforms

DEMA in terms of load balancing. Due to limited space, we omit the results

for uniform, normal and Zipf’s distribution; but the BEMA scheduling pol-

icy also performed the best in these experiments. With CBMG distribution,

the MMEMA scheduling policy shows the second best performance. How-

ever, with stable distributions (uniform, normal, and Zipf), the MMEMA

scheduling policy shows lower cache-hit ratio, worse load balancing, and

higher query response time than DEMA and BEMA because hotspots are less

likely to move around when query arrival patterns are stable, thus MMEMA

scheduling policy makes the idle servers wonder around the query space with-

out specific direction. As a result, those servers suffer from floating EMA

points that represent imprecise prediction of its cache contents, and yields

low cache-hit ratio.

Next, we evaluate the scheduling policies under the dynamic query distri-

butions. In this set of experiments, we manipulated the query distribution so

that the first 10,000 queries arrive in a normal distribution and the next 10,000

queries arrive in a Zipf’s distribution, the next 10,000 queries arrive in a nor-

12 Beomseok Nam et al.

 60000
 40000

 20000

 10000

 6000
 4000

 2000

 1000

 500

 250
403530252015105

T
im

e
(m

se
c)

Number of Servers

AVG Query Response Time (Dynamic)
Load

DEMA
BEMA

MMEMA

(a) Query Response Time

 0

 20

 40

 60

 80

 100

403530252015105

P
er

ce
n
ta

g
e

(%
)

Number of Servers

Cache Hit Ratio (Dynamic)

Load
DEMA
BEMA

MMEMA

(b) Cache Hit Ratio

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

40353025201510

st
d
d
ev

Number of Servers

Load Balance (Dynamic)
Load

DEMA
BEMA

MMEMA

(c) Load Balance

Fig. 6 Dynamic Query Distribution (# of App. Servers)

mal distribution with a different average, and the next 10,000 queries arrive

in a uniform distribution. We adjusted the averages and variances of those

distributions to create hotspots and make them move noticeably. When the

query distribution is dynamic in this way, DEMA suffers from its inflexible

nature and shows the worst load balance as in Figure 6(c). Because of the fail-

ure in load balancing, the DEMA policy shows high query response time and

even the Load-based scheduling policy performed better than DEMA when

the number of servers is 40 as shown in Figure 6(a). On the other hand, the

BEMA, and MMEMA scheduling policies quickly adapt to new query pat-

terns. It is notable that the query response time of MMEMA scheduling pol-

icy is about 180 times smaller than the DEMA scheduling policy because

MMEMA scheduling policy has much better load balance than the other

EMA-based scheduling policies (Figure 6(c)) and higher cache-hit ratio than

the other scheduling policies (Figure 6(b)). The cache-hit ratio of MMEMA is

remarkably higher (by 10%) than the second best BEMA scheduling policy,

and the average query response time is only 22% of BEMA query response

time.

 2000

 4000

 6000

 8000

 10000

 12000

 14000

0.380.330.280.230.180.130.080.03

T
im

e
(m

se
c)

α

AVG Query Response Time (Dynamic)
DEMA
BEMA

MMEMA

(a) Query Response Time

 40

 50

 60

 70

 80

 90

0.380.330.280.230.180.130.080.03

P
er

ce
n
ta

g
e

(%
)

α

Cache Hit Ratio (Dynamic)
DEMA
BEMA

MMEMA

(b) Cache Hit Ratio

 500

 1000

 1500

 2000

 2500

 3000

0.380.330.280.230.180.130.080.03

st
d
d
ev

α

Load Balance (Dynamic)
DEMA
BEMA

MMEMA

(c) Load Balance

Fig. 7 The Effect of DEMA Smoothing Factor α in Dynamic Distribution

We ran experiments with various α values to see the effect of smooth-

ing factor α on the system performance. In Figure 7, we observe that set-

Title Suppressed Due to Excessive Length 13

ting α close to 0.1 results in a low query response time for EMA-based

scheduling policies. However, if the α becomes smaller, the cache-hit ratio

increases but the standard deviation in the number of assigned queries also

increases so that the average query response time becomes larger. Although

the MMEMA scheduling policy shows good load balancing behavior, with

very low smoothing factor α they also suffer from load imbalance. This is

because the MMEMA scheduling policy needs to move an additional EMA

point quickly to new hotspots to alleviate the heavy workload on the busy

servers, but very low α values slow down the movement of the additional

EMA points.

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 8000 16000 24000 32000 40000

K
L

 d
iv

er
g

en
ce

Number of Queries

KL Divergence (Uniform)
BEMA
DEMA

MMEMA

(a) Uniform Distribution

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 8000 16000 24000 32000 40000

K
L

 d
iv

er
g

en
ce

Number of Queries

KL Divergence (Dynamic)
BEMA
DEMA

MMEMA

(b) Dynamic Distribution

Fig. 8 KL Divergence

In Probability theory and Information theory, the Kullback-Leibler diver-

gence (KL-divergence) [7] is a commonly used metric that measures the dif-

ference between two probability distribution P and Q. The KL-divergence is

a logarithmic distance metric between two distributions, having zero for iden-

tical distributions and a larger value for different distributions. We employed

the KL-divergence to see if the EMA points adjust their locations to form a

distribution that is close to the query distribution. Intuitively, the EMA points

whose locations exactly match the query distribution (i.e., more EMA points

exist where more queries arrive) can perfectly balance the workload among

the servers.

Figure 8 shows the Kullback-Leibler divergence values in our simulation

studies that employed 100 application servers. Each application server has

a cache that can hold up to 100 query results. The smoothing factor α was

0.03 for this set of experiments. Since the number of EMA points is relatively

small, we partitioned the problem space into 25 equal-sized square regions

and counted the number of EMA points and queries that are located inside

each region. In order to measure how promptly EMA points follow current

query distribution, we generated query distribution histograms - P using the

14 Beomseok Nam et al.

most recent 2000 queries stored in a queue, and measured KL-divergence per

every 200 queries using EMA distribution histograms - Q.

As shown in Figure 8, EMA-based scheduling policies make the KL-

divergence smaller as more number of queries arrive. In uniform query dis-

tribution, the BEMA makes KL-divergence converge faster (as low as 0.021)

than other EMA-based scheduling policies. In dynamic distribution, where

hotspots change every 10,000 queries (see Figure 8(b)), the KL-divergence

value goes up as high as 3.2 in the case of the three movements of hotspots.

But the MMEMA policy makes the KL-divergence converge very fast by

moving EMA points to the region where new hotspots are located. Note that

in the second and third change of hotspots, the DEMA policy suffers from its

inflexible nature, and the KL divergence value doesn’t decrease below one.

5 Related Work

In the context of web server clusters, content-aware request distribution has

been investigated by Aron et al. [2,10]. They proposed the LARD (Locality-

Aware Request Distribution) strategy, which assigns a request to an idle back-

end server and subsequent same requests are forwarded to the same server

until the server is heavily loaded. If the server is heavily loaded, LARD se-

lects another idle server to hand off. LARD is one of the earliest distributed

scheduling policy that considers both cache-hit and load balance. EMA-based

scheduling policies share the goal with LARD, but our policies proactively

distribute workloads to achieve better load balancing.

In the domains ranging from relational databases decision-support sys-

tems, to database middlewares designed to support data intensive analytical

applications, substantial research has been conducted to optimize query exe-

cution plans and minimize the cost of processing a series of database queries

[5,11–14,16].

Andrade et. al [1] investigated exploiting inter-query locality in distributed

query processing middlewares. Their approach splits a query into parallel sub-

queries, which increases the flexibility of re-arranging the query execution

order and maximizes cache-hit ratio for distributed scientific data analysis

applications.

In this work, we have focused on a single cluster environment, but the

EMA-based scheduling policies can be employed in wide-area distributed

environments as well. Zhang et al. [15] conducted a study that effectively

leverages multiple back-end servers in a Grid environment. They compared

the benefits of reusing a cached result with the extra overhead imposed on the

server where the cached result is stored.

Title Suppressed Due to Excessive Length 15

6 Conclusion

Leveraging distributed cache data as a valuable asset would become more and

more important because the present trend is to build large scalable distributed

systems by connecting small heterogeneous machines rather than purchasing

expensive main frame workstations.

In this paper, we presented distributed query scheduling policies that take

into consideration the dynamic contents of distributed caching infrastructure.

In order to achieve load balancing as well as to exploit cached results, it is

required to employ more intelligent query scheduling policies than the tradi-

tional round-robin and load-monitoring scheduling policies. Our novel EMA-

based scheduling policies predict the contents of remote semantic caches

as well as distributed system load information, and outperform load-based

scheduling policy by orders of magnitude.

References

1. Andrade, H., Kurc, T., Sussman, A., Saltz, J.: Multiple query optimization for data analysis applica-

tionson clusters of SMPs. In: Proceedings of the 2nd IEEE/ACM International Symposium on Cluster

Computing and the Grid (CCGrid). IEEE Computer Society Press (May 2002)
2. Aron, M., Sanders, D., Druschel, P., Zwaenepoel, W.: Scalable content-aware request distribution in

cluster-basednetwork servers. In: Proceedings of Usenix Annual Technical Conference (2000)
3. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approx-

imate nearest neighbor searching fixed dimensions. Journal of the ACM 45(6), 891–923 (Nov 1998)
4. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry, Algorithms and

Applications. Springer (1998)
5. Chen, F.C.F., Dunham, M.H.: Common subexpression processing in multiple-query processing.

Transactions on Knowledge and Data Engineering 10(5), 493–499 (199)
6. lun Chou, Y.: Statistical Analysis. Holt International (1975)
7. Kullback, S., Leibler, R.A.: On information and sufficiency. Annals of Mathematical Statistics 22(1),

79–86 (1951)
8. Menasce, D.A., Almeida, V.A.F.: Scaling for E-Business: Technologies, Models, Performance, and

Capacity Planning. Prentice Hall PTR (2000)
9. Nam, B., Shin, M., Andrade, H., Sussman, A.: Multiple query scheduling for distributed semantic

caches. Journal of Parallel and Distributed Computing 70(5), 598–611 (2010)
10. Pai, V., Aron, M., Banga, G., Svendsen, M., Druschel, P., Zwaenepoel, W., Nahum, E.: Locality-aware

request distribution in cluster-based network servers. In: Proceedings of ACM ASPLOS (1998)
11. Ren, Q., Dunham, M.H., Kumar, V.: Semantic caching and query processing. IEEE Transactions on

Knowledge and Data Engineering 15(1), 192–210 (2003)
12. Roy, P., Sehadri, S., Sudarshan, S., Bhobe, S.: Efficient and extensible algorithms for multi query

optimization. In: Proceedings of 2000 ACM SIGMOD International Conference on Management of

Data (SIGMOD). pp. 249–260 (2000)
13. Sellis, T.K., Ghosh, S.: On the multiple-query optimization problem. IEEE Transactions on Knowl-

edge and Data Engineering 2(2), 262–266 (1990)
14. Xiong, X., Mokbel, M.F., Aref, W.G., Hambrusch, S.E., Prabhakar, S.: Scalable spatio-temporal con-

tinuous query processing for location-aware services. In: Proceedings of 16th International Confer-

ence on Scientific and Statistical Database Management (SSDBM) (2004)
15. Zhang, K., Andrade, H., Raschid, L., Sussman, A.: Query planning for the Grid: Adapting to dy-

namic resource availability. In: Proceedings of the 5th IEEE/ACM International Symposium on Clus-

ter Computing and the Grid (CCGrid). Cardiff, UK (May 2005)
16. Zhao, Y., Desshpande, P.M., Naughton, J.F., Shukla, A.: Simultaneous optimization and evaluation of

multiple dimensional queries. In: Proceedings of 1998 ACM SIGMOD International Conference on

Management of Data (SIGMOD). pp. 271–282 (1998)

