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Abstract—Various transactional systems use out-of-place up-
dates such as logging or copy-on-write mechanisms to update data
in a failure-atomic manner. Such out-of-place update methods
double the I/O traffic due to back-up copies in the database layer
and quadruple the I/O traffic due to the file system journaling.
In mobile systems, transaction sizes of mobile apps are known to
be tiny and transactions run at low concurrency. For such mobile
transactions, legacy out-of-place update methods such as WAL
are sub-optimal. In this work, we propose a crash consistent in-
place update logging method - doubleheader logging (DHL) for
SQLite. DHL prevents previous consistent records from being
lost by performing a copy-on-write inside the database page
and co-locating the metadata-only journal information within
the page. This is done, in turn, with minimal sacrifice to page
utilization. DHL is similar to when journaling is disabled, in the
sense that it incurs almost no additional overhead in terms of
both I/O and computation. Our experimental results show that
DHL outperforms other logging methods such as out-of-place
update write-ahead logging (WAL) and in-place update multi-
version B-tree (MVBT).

I. INTRODUCTION

In legacy block device storage systems, to retain consistency
upon faults, logging or copy-on-write (CoW) techniques have
been used to create an isolated snapshot of data and to
make changes to it at page granularity. Hence, legacy crash
consistency mechanisms perform out-of-place updates and
duplicate entire blocks. With these out-of-place mechanisms,
Android I/O stack suffers from excessive I/O owing to the
journaling of journal problem [7], which is a phenomenon
where an fsync()/fdatasync() issued to journal the
SQLite database file triggers another metadata journaling in
the file system layer [7], [9], [14]. For example, sending a
short text message such as “Ok” using a messaging app entails
16 KBytes or 40 KBytes of writes when WAL or PERSIST
journal mode is used.

To avoid the journaling of journal problem, various ap-
proaches have been proposed to improve the performance of
mobile storage systems. For example, new byte-addressable
nonvolatile memory (NVM) media has been employed [10],
[17], [24], the file system has been modified to mitigate
the overhead of fsync() calls [6], [16], [18], [22], [25],
[28], and SQLite has been modified to employ other logging
methods, such as multi-version B-tree (MVBT) [11], WALDIO
(WAL+direct IO) [16], and DASH (DB file shadowing) [29],
to reduce the I/O traffic.

Although these works have been shown to mitigate the
journaling of journal problem, we believe the previous meth-

Fig. 1. Mobile App Workloads H: Hangout, I: Instagram, Co: Contacts, F:
Facebook, G: Gmail, Ca: Calender, K: Kakaotalk

ods [11], [16], [29] are sub-optimal for mobile workloads. For
example, although multi-versioning eliminates the necessity of
a separate journal file and reduces the number of fsync()
calls by half, the cost of managing and garbage-collecting
multiple versions of records are significant and it complicates
the management of B+-tree structures, which is tightly cou-
pled with the database engine in SQLite [11], [27]. While
multi-versioning is originally designed for highly concurrent
database management systems, SQLite makes use of file locks
for synchronization and no other embedded database systems
support fine-grained concurrency control because there is no
significant need for high concurrency in mobile devices. When
considering that only one outstanding transaction accesses an
entire database file in mobile systems, managing multiple
versions of individual records in mobile database systems
seems unnecessary overhead.

In mobile devices, it has been reported that a write transac-
tion rarely writes multiple data items because SQLite works in
the auto-commit mode by default [17]. In auto-commit mode,
each SQL statement becomes an individual transaction that
calls write() and fsync() functions. As was done in
previous studies [8], [17], [29], we collected an SQL trace
that consists of 323,986 SQL statements from representative
mobile applications running on Samsung Galaxy S7 (Android
7.1.2 Nougat and Linux Kernel 3.18.14). Using the trace, we
counted how many SQL statements were executed in auto-
commit mode. Figure 1 shows that multi-operation transac-
tions account for a very small portion in representative mobile
apps except Gmail. As for Gmail, SQLite stores senders,
receivers, label names, and mail bodies of a single e-mail
into different tables as a single transaction. However, most
transactions in the other applications do not batch transactions
but commit individual statement automatically. Furthermore,
mobile apps frequently open and close DB files, which makes
it difficult for WAL to combine and batch a large number of
transactions because closing a DB file triggers checkpointing.



Motivated by these observations, we propose a metadata-
only journaling scheme termed doubleheader logging (DHL)
for SQLite, which minimizes, if not eliminates, the logging
overhead. DHL is specifically tailored for mobile workloads
where concurrency is not a paramount concern and transaction
sizes are small. DHL is an in-place update scheme from
the perspective of page granularity. However, at the same
time, DHL is also an out-of-place update scheme from the
perspective of record granularity because it does not overwrite
existing consistent records until the write transaction commits.
We achieve this goal by leveraging the internal free space of
the SQLite database page.

The key idea of DHL is to journal only the metadata
of database pages and store updated records, which are not
exposed to other transactions until the transaction commits,
in the free space of slotted-pages. DHL prevents overwriting
the old records in the page until the transaction commits and
journals a small amount of metadata, but not the actual data.
With the small log size, DHL can co-locate the journal in the
slotted-page instead of using a separate rollback journal file
or WAL log file, while guaranteeing crash consistency.

We also develop a novel counting commit protocol
for DHL that embeds a transaction commit mark and
the transaction size to eliminate the need for a separate
fsync()/fdatasync() to impose the ordering constraint
to dirty page writes. In the counting commit protocol, we
count the number of dirty pages flushed by the last transaction
and verify that all dirty pages are successfully flushed. By
eliminating the ordering constraint, DHL is write-optimal in
that it calls fsync()/fdatasync() only once and does
not duplicate dirty records but only small per-page metadata
as the intent of transactions.

We measure the performance of DHL in SQLite on a Sam-
sung Galaxy S7 smartphone. Our performance study shows
the following: (i) DHL minimizes the I/O as it calls write()
exactly the same number of times with the number of updated
database pages in a transaction, i.e., one write() per each
dirty page. (ii) DHL eliminates the overhead of enforcing strict
ordering of writes as it requires fsync()/fdatasync()
only once per transaction. These optimizations combined help
resolve the journaling of journal problem as well as reduce
wear of flash devices.

The rest of this paper is organized as follows. In Section II,
we briefly discuss the background and other research efforts
related to this work. In Section III, we present our design
and implementation of DHL on SQLite. Section IV presents
the performance results and analyses of DHL. Finally, we
conclude the paper in Section V.

II. BACKGROUND AND RELATED WORK

Slotted-Page: In database systems, a page is essentially the ab-
straction of a collection of records. With this page abstraction,
the buffer cache manager in database systems communicates
with I/O devices. To arrange a collection of records in a page,
the slotted-page structure [21], [24], [26] is commonly used in
various database systems ranging from mobile DBMSs such as

SQLite to server-client DBMSs such as PostgreSQL, InnoDB,
and Oracle [24]. The slotted-page structure has a slot-header
(also referred to as a directory of slots) at the beginning of the
page, free space in the middle, and a record content area at
the end of the page. The slot-header contains metadata about
the page, e.g., the number of records stored in the page, the
end of free space in the page, and an array of offsets that point
to records and their lengths.

When a new record is inserted into a slotted-page, space
is allocated at the end of the free space extending the record
content area. The record’s offset is added to the array of record
offsets, which grows towards the end of the page. This level
of indirection in the slotted-page structure allows to minimize
the data movement when we insert, modify, or delete records
while keeping them in a sorted order. If we insert a key in the
middle of sorted keys, the slotted-page structure stores the key
in the free space regardless of its value but sorts the array of
record offsets by inserting the key’s offset in the middle of the
array. When we update an existing record in a slotted-page,
we overwrite the record and rearrange the offsets according to
the updated key value.
Out-of-Place vs. In-Place Logging: In transactional systems,
there exist two types of logging approaches, namely, out-
of-place logging and in-place logging. Out-of-place logging
methods such as undo and redo logging store log entries in a
separate logging space. In undo logging mode, such as the roll
back journal mode in SQLite, i) a transaction creates a copy
of the unmodified page to be updated, ii) performs in-place
updates (overwrites old pages), and iii) deletes the copy when
the transaction commits. In redo logging mode, such as the
write-ahead logging (WAL) in SQLite, i) a transaction appends
uncommitted dirty pages to a log file, ii) puts a commit mark
in the log when the transaction commits, and iii) periodically
performs checkpointing in a lazy manner in order to copy the
committed pages to the database file in a batch. At the block
device level, legacy undo and redo logging methods perform
copy-on-write operations at the granularity of a disk block. A
problem of copy-on-write operations is that they double the
amount of I/O because both the old and new copies that are
on different pages need to be written.

In-Page Logging (IPL) is another out-of-place logging
scheme designed for flash memory [15]. Although the name
implies it is an in-page logging scheme, IPL does not store log
entries inside database pages, but in separate logging space.
IPL tackles the erase-before-write limitation of flash memory
and exploits the design of the flash translation layer (FTL). In
particular, IPL divides each erase unit of flash memory, i.e.,
a group of pages, into two segments and stores log entries in
one segment and data pages in the other segment. Although
IPL co-locates log entries and data pages in the same erase
unit, log entries are stored separately from data pages. Unlike
IPL, DHL is independent of the FTL and it co-locates log
entries in data pages. As such, DHL does not duplicate records
but copy-on-write per-page metadata in the same block while
IPL distinguishes the logging region from the data region and
makes copies of records.



Fig. 2. Slotted-Page Structure with Two Slot Headers

Alternatively, write transactions may perform in-place log-
ging by keeping multiple copies of records in the same page.
For instance, multi-version concurrency control (MVCC) is
one of the most well known in-place logging methods that
does not overwrite the original record, but instead creates
a new version of the record within the page. One of the
benefits of multi-versioning is that it improves the concurrency
level as read transactions can access old versions while a
write transaction creates a new version. MVCC allows a large
number of transactions to access a database table concurrently.
However, MVCC is known to hurt space utilization as it
stores multiple versions of the same record and therefore,
requires garbage collection. More specifically, upon record
updates, MVCC writes a page to create a new version of
the record instead of overwriting the existing version. Even
if the transaction commits and no other transaction accesses
the old version, the old version remains in the page until a
background garbage collection process detects and deletes it.
We note that MVCC is a concurrency control method that
provides high concurrency level at the cost of storage and
garbage collection overhead. SQLite is a thread-safe embedded
database engine that locks the entire database file when it
is updated. In embedded database systems, a query normally
takes a short time (less than a few milliseconds) [3], [7], [11],
and most applications in embedded systems need only low
level of concurrency, unlike client-server enterprise database
systems. Furthermore, running a periodic background process
is not desirable as it may consume unnecessary computing
resources and power. In such a mobile environment where
storage space is insufficient, legacy MVCC is not a preferred
logging method.
Persistent Memory and Mobile DB: In addition to the log-
ging methods for block device storage systems, various efforts
have been recently made to leverage the byte-addressability of
emerging persistent memory. With persistent memory, out-of-
place logging methods do not need to perform copy-on-write
operations at the granularity of pages but can be performed
at finer granularity [4], [5], [10], [13], [17], [19], [24], [30],
[31]. However, pioneering products, such as Intel Optane
DC persistent memory [1], are known to be a storage class
memory architected specifically for data center usage, and
it is not known when such persistent memory products may
be commercially available for mobile devices. Hence, in this
work, we focus on developing a logging scheme for flash
memory and embedded database systems.

III. DOUBLEHEADER LOGGING

Doubleheader logging (DHL) that we propose is an in-
place logging method that performs copy-on-write inside a

page by utilizing the slotted-page structure and the free space
within the page. Like multi-versioning, it employs transaction
IDs to figure out which version is valid. However, unlike
MVCC, DHL does not keep multiple versions of records but
manages two versions of metadata. Therefore, DHL does not
require periodic garbage collection process because running a
background process is not an option in mobile devices. DHL
is also similar to undo logging in that it makes changes to the
original page, and yet, it is different in that DHL does not make
a copy of the original page. Also, it is like redo logging in that
it journals uncommitted dirty records in free space, and yet, it
is different in that the scratch space is within the slotted-page
and that there is no checkpointing involved. The key idea of
DHL is to keep the old record, the new record, and the commit
mark in the same page and write all of them atomically with
a single write. Details of how this is done are presented in
Section III-A. As recovery is important for consistency, we
discuss recovery in DHL, in detail, in Section III-B.

A. In-Page Metadata-only Journal

In essence, the key idea of DHL is to write the intent (that is,
in our case, the new record) as in redo logging, but write it to
the original page as in undo. For this, we propose a technique
that we call in-page metadata-only journaling. In particular,
we propose to have two versions of metadata (double slot-
headers, hence, doubleheader, in short) in the slotted-page, as
shown in Figure 2. As we will explain later, one of the two
slot-headers becomes the journal of the other. Hence, the term
metadata-only journaling.

The key idea in maintaining consistency with DHL is being
able to identify the more recent and/or committed slot-header
of the two through which the valid records in the page will
be accessed. For this, each slot-header is tagged with the
ID of the transaction, which is assigned in monotonically
increasing order, that modified the page. In SQLite, the first
page of a database file (database header page) stores global
metadata pertaining to the database table, which includes the
File Change Counter, henceforth referred to as FCC. FCC is
incremented upon every successful write transaction and used
for concurrency control. In DHL, we use FCC in assigning a
transaction ID to tag slot-headers. In addition to the transaction
ID, each slot-header stores, as depicted in Figure 2, the free
space offset value, the number of records stored in the page,
and the offset array that manages the location of the records in
the page. Note that aside from the addition of the transaction
ID, each DHL slot-header is identical to the slot-header of the
stock slotted-page structure.

In the following, we use the example depicted in Figure 3 to
walk through the detailed workings of DHL for each database



Fig. 3. Walk Through Example of DHL in Action

operation. Before so doing, one important point must be em-
phasized. That is, in DHL, just like conventional slotted-page
structure management, access to the page of interest, whether
for reads or writes, occur in volatile buffer cache. Hence,
until the changes are reflected into storage, all changes are
temporary and the original page can always be recovered from
storage. Thus, in essence, recovery from faults is no different
from legacy mechanisms used for stock SQLite. DHL does
not use any more buffer space than other logging methods. In
contrast, WAL uses more memory space to construct WAL
frame headers, while MVCC uses more memory and disk
space to manage multiple versions. Note that memory is a
scarce resource, and more so for mobile devices.

Insert: Assume that the system has been initialized and
thus, both slot-headers are initialized and invalid. Let us now
consider the case where a transaction creates a page with a
single record as depicted in Figure 3(a). As in stock SQLite,
the transaction stores the record at the end of the page and
updates the first slot-header accordingly. Note that here the
TID for Slot Header 1 is 1. As this transaction ends, the FCC
value in the database header page is also set to 1 (through the
stock slotted-page mechanism in SQLite) and then persisted.
It is this incremented and persisted FCC value that serves as
a commit mark.

Now, assume we have a subsequent, new insert operation.
The new record is written in the free space (address 992) and
the invalid slot-header (Slot Header 2) is overwritten with a
new slot-header that is updated appropriately from the current
valid slot header (Slot Header 1) (that is, number of records
incremented and offset array contents updated with the new

record offset). In particular, note that the TID is 2, which is
obtained by reading and incrementing the FCC value (which,
at the time of updating Slot Header 2, is 1). Figure 3(b) depicts
the results. Note again that at this point FCC is still 1 and so,
the second insert has not yet been committed. We emphasize
again that this is all happening in the volatile buffer cache.

Now to commit the second insert, we first write() (page
flush) the slotted-page. Note that only single write is required
to update both the slot-header and the new record as both are
in the same slotted-page. Then, another write() is needed
to persist the incremented (from 1 to 2) FCC value in the
database header to commit the insert, until which time Slot
Header 2 and <10,V1> is still invalid. Figures 3(b) and (c)
show the states before and after commit, respectively.

Through similar steps, we show in Figure 3(d) the results
of another record being inserted into the page. We see slot-
headers taking turns overwriting and validating the previous
invalid slot-header (the shaded slot-headers in the figure) with
the updated metadata.

Commit: As just described, a transaction commits only with
the validation of the TID that updates one of the slot-headers,
which, in SQLite, is achieved with the increase of FCC in the
header page. Note that persisting FCC requires an extra page
write() and fsync().

Reference: Upon a reference of a page by a transaction, we
compare the transaction IDs of the two slot-headers against the
ID of the most recently committed transaction. Note that the
more recent slot-header may not always be the consistent one
as the transaction that wrote the slot-header may not have yet
committed. In Figure 3(b), the more recent slot-header (Slot



(a) Multi-Version B-tree

(b) WAL

(c) DHL

Fig. 4. Synchronization Steps for Transaction Commit

Header 2) and the new record are not yet exposed to other
transactions as the FCC value is smaller than the TID of the
slot-header. If the FCC is greater than or equal to the TIDs of
both slot-headers, the slot-header with the greater value is the
valid one. The number of records and the offset values in this
valid slot-header are used to find the record of interest.

Update and Delete: While the insert transaction stores a
new record in the free space of the page, the update transaction
overwrites an existing record and the delete transaction shifts
records to merge the free space. Such an in-place update is not
acceptable in DHL because it needs to keep the old record until
the transaction commits. To remedy this issue, DHL uses the
free space as an isolated scratch space for write transactions
and performs an in-page copy-on-write operation as follows:

(1) Deletes: Assume that Figure 3(d) is the current commit-
ted state of the page and we intend to delete record <10, V1>.
We first perform an in-page copy-on-write of the valid slot-
header Slot Header 1 to Slot Header 2 in volatile buffer cache.
Then, appropriate changes are made: the number of records is
decremented, an element of the offset array is removed, and
the TID set to 4. When the transaction is ready to commit,
DHL calls write() to output the buffer cache. Notice that
all these changes are not reflected until a commit occurs.
Hence, if a fault occurs during or after these changes, but
before the commit, the page will simply ignore these changes
as FCC will be 3, and not 4. Figure 3(e) depicts the state
after commit, that is, the page is made persistent and FCC is
persisted to 4, which will happen in this particular order. Note
that with deletes, the record content area cannot be compacted
as it must be recoverable if a fault occurs in between the
page and the FCC being persisted. Hence, this incurs internal
fragmentation. However, this can be easily resolved with a

subsequent write transaction. Since records in volatile buffer
cache are free to move around in the page and their offset
values can be updated accordingly, records invalidated by a
transaction T can be garbage collected by a subsequent write
transaction whose transaction ID is greater than T + 1.

(2) Updates: Assume that Figure 3(e) is the current commit-
ted state of the page and we intend to update record <20, V2>
to <20, V2’>. Similarly to deletes, for updates, we perform
in-page copy-on-write of the valid slot-header, and appropriate
changes are made. Again, these changes are being done in
volatile buffer cache and will be permanently reflected only
upon a commit. Hence, fault before the commit will recover to
the old slot-header as the FCC is not yet updated. Figure 3(f)
shows the state of the page after the commit. Note that instead
of overwriting the existing record, the updated record is written
in free space, as in inserts. This is because, similarly to delete,
we need to recover properly when a fault occurs between the
page and the FCC becoming persistent. This, in effect, also
incurs internal fragmentation.

B. Recovery in DHL

Various system failures such as power loss can occur during
DHL execution. If the system crashes as we insert a new
record, there can be three outcomes, i.e., (1) the system crashes
before we flush the dirty page, (2) the system crashes after we
flush the dirty page but before the transaction commits, i.e.,
the (updated) FCC is not persisted, (3) the system crashes after
the transaction commits. First, if the system crashes before the
dirty page is written to persistent storage, both the record and
its updated slot-header have not been reflected on storage. In
this case, the recovery process does nothing. In the second
case where the system crashes after the dirty page is written
but before the transaction commits, the record is pointed to
by the updated slot-header but its TID is not valid, i.e., the
transaction did not increase the FCC. To recover from this
failure, a recovery process must verify the TIDs of slot-headers
and invalidate the updated slot-header whose TID is greater
than the FCC. Suppose the system crashes in the state shown
in Figure 3(b). To recover from the failure, we scan the page
and invalidate the second slot-header by setting the TID of the
second slot-header to INV. It is noteworthy that this recovery
algorithm does not copy any record but changes a single
metadata. Finally, if the system crashes after the transaction
updates the page and increases the FCC, the transaction has
committed. Thus, recovery is not necessary.

Recovery in DHL has to scan the entire database file as it
needs to find the pages that have slot-headers with TID greater
than the FCC. However, it updates only a few pages updated
by the aborted transactions. Considering that reads are much
faster than writes in most storage devices, the recovery time
depends on how many uncommitted slot-headers are written
to the file. This recovery method is similar to that of LS-
MVBT [11], which also scans all pages for sanity check
but updates only a few pages that should be rolled back to
a consistent version. Such a brute-force recovery method is
known to be faster than the legacy recovery method using



WAL in mobile applications because database tables in mobile
systems are often very small [11]. In Section IV, we measure
the recovery time of DHL.

C. Synchronization: Write Ordering and Durability

To guarantee transactional consistency, a commit mark
must be written after all other dirty pages in the
transaction are flushed. To impose the ordering con-
straint, fsync()/fdatasync() needs to be called be-
fore a write() is called for a commit mark. As il-
lustrated in Figure 4(a) and (b). MVCC calls the first
fsync()/fdatasync() to enforce the write ordering
between dirty pages and a commit mark, and the second
fsync()/fdatasync() to persist the transaction and no-
tify the client that the transaction has committed. While
MVCC is designed for highly concurrent database systems,
not all applications require such high concurrency level at the
cost of additional storage overhead and garbage collection.
In particular, in embedded systems such as mobile devices,
running a garbage collection process in the background is not
an option. Thus, proposals such as LS-MVBT, a multi-version-
based recovery mode for SQLite, employs a lazy garbage
collection mechanism [11].

Now, if a database system guarantees isolation between
transactions using reader/writer locks and thus, no two transac-
tions concurrently modify the same page, the recovery process
simply has to choose one of the two intentions (slot-headers)
in the page, i.e., the one with the higher or lower TID.
Therefore, keeping only two versions of each page, unlike
MVCC that manages multiple versions of each individual
record, is sufficient to guarantee failure atomicity.

WAL mode in SQLite, on the other hand, takes an optimistic
approach. Instead of imposing the ordering constraint between
dirty pages and a commit mark, it flushes dirty pages, a
commit mark, and their checksum bytes altogether via a
single fsync()/fdatasync(). Although checksums can
detect inconsistent log entries in most cases, there is a small
possibility of missing inconsistent states [32].

D. Counting Commit in DHL

To eliminate the need for a separate flush of a commit
mark, cyclic commit protocols such as Simple Cyclic Commit
(SCC) and Back Pointer Cyclic Commit (BPCC) have been
proposed [20]. In cyclic commit protocols, a transaction is
committed only if all dirty records are written and their
pointers create a cycle. That is, if any of the dirty pages
are not flushed, the pointers will not form a cycle and the
transaction is considered to have aborted. In DHL, we take
a similar but simpler approach. Instead of creating a cycle,
we store the transaction size (the number of dirty pages to be
flushed together) along with FCC, as shown in Figure 4(c).
We refer to this commit protocol as counting commit.

The counting commit protocol works as follows. SQLite
uses the FCC as the write TID and a simple file-based locking
mechanism is used for concurrency control. Therefore, no two
concurrent write transactions can update the database file at

(a) Initial State

(b) Partially Synchronized State

(c) Another Partially Synchronized State

(d) Final State When Transaction (TID=7) Commits

Fig. 5. Walk Through Example of DHL Counting Commit

the same time. Given such low concurrency, which is typical in
embedded systems, we can embed the FCC and the number of
updated dirty pages in one of the dirty pages. Let us consider
the example shown in Figure 5(a), where the database file has
three pages A, B, and C. The most recently committed TID
is 6 and the transaction has updated all three pages.

Let us suppose that the next transaction updates pages A
and B. Since the current FCC is 6, the new TID becomes
7. According to the DHL algorithm described earlier, one of
the slot headers in the two pages are updated. As a commit
mark, the new FCC value 7 and the number of dirty pages in
the transaction, which is 2, must be written to the database
header page, as shown in Figure 5(d). Since DHL does not
call fsync()/fdatasync() to enforce write ordering,
there is no guarantee which dirty page will be flushed first.
Nevertheless, DHL still guarantees that it will rollback to the
previous consistent state upon a crash. Specifically, there are
two cases to consider. First, suppose the system crashes when
some and possibly all dirty data pages were flushed but the
database header page that stores the FCC and the transaction
size was not flushed. An example of such cases is shown
in Figure 5(b). When the system recovers, DHL reads the
database header page to find the largest FCC, which in this
case is 6. Then, the recovery process scans the entire database
file to count the number of slot headers whose transaction ID
is equal to the FCC, 6. If the number of found slot headers
is equal to the transaction size written in the header page,
the transaction is valid. While scanning the database file, the
recovery process marks any slot header invalid if its TID is
greater than the FCC of the header page. In this example, the
first slot header (TID=7) in page A will be marked invalid
since the transaction 7 aborted before putting a commit mark
in the header page.

Second, suppose the system crashes after the header page



Fig. 6. State Transition Diagram (INV: invalid transaction ID, e.g., -1)

with the FCC and the transaction size is flushed, but not all
other dirty pages were flushed, a case of which is depicted
in Figure 5(c). This case is possible since the write ordering
is not guaranteed in file systems unless fsync() is called
twice. When the system recovers, we find the largest FCC
in the header page, in this case 7, and count how many slot
headers have TIDs equal to the largest FCC. If the transaction
size is greater than the number of slot headers that we found,
we know that the system crashed before all dirty pages were
flushed. In the Figure 5(c) example, the transaction size is
2, but we only find 1 page with FCC value 7. To rollback
transaction 7, we count the number of slot headers whose
transaction ID is 6, in this case 3, and restore the database
header page. To rollback transaction 7, we restore the database
header page by decreasing the FCC by one and restoring
the transaction size. Note that a slot header whose TID is
T is never overwritten by the next transaction whose TID is
T + 1 in DHL. Therefore, even if transaction T + 1 aborts,
the number of slot headers written by its previous transaction
T is guaranteed to be found. Therefore, decreasing FCC
and restoring the transaction size atomically in the database
header page guarantees failure-atomicity of transactions and
eliminates the need for a separate fsync()/fdatasync()
for the commit mark.

E. Consistency Guarantee: State Transition of Page in DHL

Figure 6 illustrates the states that a DB page can have
during its lifetime. Transition edges represent atomic write
events under which a DB page changes its state and the
rollback activities undertaken during the recovery upon system
failures. A page update transition (solid arrow) denotes a write
operation, i.e., insertion, deletion, or update of a record in a DB
page. A recovery transition (dashed arrow) denotes a recovery
operation that invalidates an aborted transaction ID.

Theorem 1. At least one of the two TIDs in a DHL page is
the TID of a committed transaction.

Proof. In DHL, the TID is monotonically increased by write
transactions. Since DHL does not allow write transactions to
access dirty pages written by an aborted transaction, a DHL
page cannot have two TIDs of aborted transactions. If a DHL
page has a TID of an aborted transaction, the other smaller
TID must be the TID of a committed transaction.

According to the theorem, transactions can always access a
consistent state of the page. If both TIDs in a DHL page are
of committed transactions, we use the more recent higher TID
and overwrite the other smaller TID as shown in Figure 6.

Theorem 2. If both TIDs of a DHL page are transaction
IDs of committed transactions (TIDold < TIDvalid), the old
slot header slot header(TIDold) can be overwritten without
compromising consistency.

Proof. As there can only be one outstanding write transaction,
rollback does not require two previous consistent states but
only the most recent consistent state. Therefore, the slot
header of the older transaction slot header(TIDold) is not
necessary for recovery and, therefore, can be overwritten
without compromising consistency. Read transactions also do
not need the old slot header because read transactions are
serialized by write locks.

F. Limitations of DHL

There are a few limitations to DHL, namely, decreased
page utilization, low concurrency, and random writes. We now
elaborate on these three issues.

Page utilization: One drawback of DHL is that it needs to
store two slot-headers in each page thereby decreasing page
utilization. In SQLite, each offset in the slot-header occupies
two bytes. If the record size is 8 bytes, a legacy 4KB slotted-
page can hold a maximum of 340 records, but DHL does not
allow more than 291 records because of the additional slot-
header. In other words, when the record size is 8, 16, 32, or 64
bytes, DHL decreases page utilization by 14% (340 vs. 291),
9% (204 vs. 185), 5% (113 vs. 107), and 3% (60 vs. 58),
respectively. We do not have a solution to this drawback and
consider this issue as a trade-off for improved performance.

Low concurrency: As DHL allows only two slot-headers,
unlike MVCC, multiple transactions cannot access the same
pages at the same time. Therefore, DHL can be used along
with per-page locking methods but not with per-record locking
methods. In order for DHL to allow multiple write transactions
using lock-based protocols, it would have to manage a list
of concurrent write transactions, and write transactions must
not overwrite the slot headers updated by other concurrent
transactions. However, as was previously discussed, SQLite
allows only one exclusive lock on the entire database file
rather than individual tables, not to mention individual pages
or records. Such coarse-grained locks in SQLite is acceptable
because mobile apps rarely run at high concurrency. Thus,
our current DHL implementation only allows serial write
transactions and does not support concurrency as in other
logging methods of stock SQLite.

Random writes: Another potential performance drawback
of in-place logging is that it performs random writes, un-
like write-ahead logging. WAL mode is known to achieve
write efficiency as it amortizes multiple writes into sequential
writes. However, when the number of dirty pages to be
written is not large and each page write is followed by
fsync()/fdatasync(), the performance gap between
sequential and random writes is not significant and it has
even been reported that the performance of the two could be
reversed on EXT4 and F2FS [7]. WAL performs sequential
writes when it appends WAL frames to the end of the log file.



However, it increases the log file size and incurs an update
of the filesystem metadata. Because such metadata updates
also issue random writes in the filesystem layer, WAL is
known to aggravate the journaling of journal problem [7],
[16]. Furthermore, checkpointing also performs random writes.
Therefore, unless a transaction updates a very large number
of pages as in an enterprise DB, WAL does not benefit from
sequential writes in mobile systems because transactions in
mobile systems are tiny due to the auto-commit [7], [16], [17].

To benefit from sequential writes on NAND flash memory,
SQLite needs to run on a file system that results in sequential
writes such as a log-structured file system [12], [23] rather than
a pseudo-sequential WAL mode. We believe the root cause of
the random write problem should be resolved by file systems,
not by SQLite. In log-structured file systems, DHL will also
perform sequential writes.

Another problem of WAL mode in SQLite is that it
calls only a single fsync()/fdatasync() similar to
our counting commit. We note that MySQL also calls a
single fsync()/fdatasync() when its WAL is up-
dated. However, we note that WAL mode with a single
fsync()/fdatasync() is potentially vulnerable to the
inconsistency problem because of the probability of unde-
tected errors caused by the checksum bytes. As reported
by Zheng et al. [32], WAL mode in SQLite often leads to
atomicity violations even without injecting a power fault. This
is because write ordering is not guaranteed with a single
fsync()/fdatasync(). That is, a commit mark of a
transaction must be put only after all dirty WAL frames are
flushed to storage. This ordering can be enforced only by
separately synchronizing the frames and the commit mark.

IV. EXPERIMENTS

We evaluate the performance of DHL against WAL and
OFF modes in stock SQLite 3.7. As WAL mode is known
to be significantly faster than legacy rollback journal modes
such as DELETE and TRUNCATE in all scenarios, we do
not show the performance of the rollback journal modes. We
set the checkpointing interval of WAL mode to 1000 dirty
pages, which is the default in SQLite. We also compare the
performance of DHL with DASH1 [29] and Multi-Version B-
tree (MVBT) [11]. DASH [29] is one of the state-of-the-art
logging methods for mobile DBMS, which was implemented
with 451 lines of code. DASH maintains two database files,
one of which behaves as a shadow file. For DHL and MVBT,
we implemented approximately less than 1000 lines of code
and 8000 lines of code, respectively.

A. Experimental Setup

We evaluate the performance of DHL on a Galaxy S7, which
has a Samsung Exynos 8 Octa 8890 Processor (2.3Ghz Quad-
Core Exynos M1 Mongoose and 1.6Ghz Quad-Core ARM
Cortex-A53), 4GB of DDR memory and 32GB UFS 2.0,
formatted with the EXT4 file system. We run Mobibench [2]

1DASH is available at https://github.com/ESOS-Lab/SHADOW and DHL
is available at https://github.com/DICL/DHL.

to evaluate the logging methods. Mobibench measures the
average insert/delete/update times of 1000 transactions, each
of which accesses one or two 128-byte records using a
randomly generated key. Unlike TPC benchmarks, Mobibench
focuses on the performance of non-concurrent auto-commit
transactions. We also evaluate DHL using the real mobile app
workloads we collected and presented in Section I. All results
reported in this section are averages of five runs.

B. Experimental Results

1) Performance Breakdown: Figure 7 breaks down the
query latency into computation time, the time elapsed for
write system calls, and the fsync overhead. We observe
that the performance of SQLite is dominated by the I/O time
in the mobile platform.

The stock WAL mode is much slower than the journal OFF
mode because WAL fails to benefit from sequential writes due
to tiny transactions. Although WAL writes WAL frames in
append-only manner, each WAL frame increases the log file
size. Since the increased file size must be reflected to filesys-
tem metadata, the filesystem performs metadata journaling.
Thus, contrary to popular belief, WAL mode performs random
writes as we will show in Figure 9(a).

Interestingly, DASH shows similar performance with WAL
mode in our experiments. In DASH mode, each transaction
obtains a list of dirty pages from the database header page and
it compares the list against the list of the previous transaction
in the shadow database file. If there are missing dirty pages,
they are written to the shadow file along with the new dirty
pages updated by the current transaction. Then, DASH swaps
the names of the two files per transaction so that the roles of
the shadow and database files switch. We found this approach
helps reduce the I/O volume especially when subsequent
transactions access the same pages repeatedly, but its high
computation time offsets the benefits.

MVBT outperforms the WAL mode because it eliminates
the need for a separate journal file and weaves version-based
recovery information into the database file itself. Since MVBT
performs in-place updates, it updates filesystem metadata less
frequently than WAL mode. Therefore, the write() and
fsync() time of MVBT is shorter than that of WAL mode.

DHL with the traditional commit, which calls fsync()
before writing a commit mark, and counting commit, are
denoted DHL TC and DHL CC, respectively. Overall, both
DHL TC and DHL CC consistently outperform all other
logging methods. Note that the performance of DHL TC and
DHL CC are no different in these experiments because each
transaction updates only one page. An interesting observation
in Figure 7 is that DHL outperforms journal OFF mode. This
is because of the metadata embedding. As we implement DHL
in SQLite, we make use of metadata embedding as suggested
by Kim et al. [11]. In metadata embedding, the FCC is stored
in the most recently updated database page instead of the
database header page [11]. Metadata embedding has the effect
of reducing the number of dirty pages to be flushed by one.
The cost for metadata embedding is that the recovery process



(a) Insert (b) Delete (c) Update

Fig. 7. Breakdown of Latency Spent for Insert, Delete and Update Statement in SQLite (AVG. of 1000 Mobibench
transactions) OO: OFF OPT, C: DHL CC, T : DHL TC, MO: MVBT OPT, WO: WAL OPT, O: OFF, M : MVBT,
S: DASH, W : WAL Fig. 8. Average I/O Volume

has to scan the entire database table to find the most recently
updated page. Since DHL must scan all the database tables
anyway to correct potentially inconsistent pages, the overhead
of metadata embedding in DHL is negligible. Note that DHL
can be used either with or without metadata embedding.

For fair comparison, we implement metadata embedding
in MVBT and journal OFF mode, whose performance are
denoted as MVBT_OPT and OFF_OPT. For WAL mode, we
optimized its performance by pre-allocating 100 log pages and
setting the checkpointing interval to the same number of dirty
pages so that each transaction does not increase the WAL file
size at all, and thereby it can avoid filesystem metadata updates
although it may waste some disk space per database file. We
denote the optimized WAL mode as WAL_OPT.

2) Write Traffic: Figure 8 shows the average disk I/O
volume for a single insertion for the same experiments shown
in Figure 7. In the stock journal OFF mode, a database
page and the database header page need to be updated per
transaction. However, in OFF_OPT mode, the FCC is updated
into the last modified database page. Therefore, OFF_OPT
mode writes only a single data page to the database file (.db)
for each insertion and reduces the number of block accesses
by half. Although SQLite does not write a journal file in the
journal OFF mode, the EXT4 file system updates the metadata
regarding the database file, such as file size and modified time,
in the EXT4 metadata journal region (jbd2). Therefore, the
total number of bytes written to the block device storage in
the journal OFF mode and OFF_OPT mode are about 10KB
and 6KB, respectively.

In the stock WAL mode, each insertion writes a WAL frame
header and a WAL frame (a dirty page), which spans two or
three pages in the log file. That is, each insertion updates at
least two pages. Hence, WAL mode appends approximately 2
pages (8KB) on average to the WAL file per insertion. As the
size of WAL file continuously changes in WAL mode, the I/O
volume to the EXT4 metadata journal region (jbd2) accounts
for as much as 68% of the total I/O volume.

In WAL_OPT mode, the I/O volume to the EXT4 metadata
journal region (jbd2) is dramatically decreased due to the pre-
allocation optimization. The total I/O volume of WAL_OPT
is even comparable to that of journal OFF mode. However,
due to the additional WAL frame header required for each
dirty page, the total I/O volume of WAL_OPT is 1.9× higher
than that of OFF_OPT. Note that the I/O volume to the
database file is almost negligible in both WAL modes. This is
because WAL mode in SQLite periodically flushes the dirty

pages in the volatile buffer cache, but not the WAL frames
in the log, when it performs checkpointing. In other words,
the number of dirty pages written to the database file is
not dependent on the number of WAL frames in the log,
but dependent on the number of dirty pages in the buffer
cache. Moreover, checkpointing occurs only once for every
checkpointing interval. Hence, the I/O volume caused by the
checkpointing process is amortized and does not account for
more than 17% of the total I/O.

In both DHL, only one page (4KB) is written to the database
file per transaction as it writes a single dirty page without a
redundant copy, that is, there is no external log file. Even so,
recovery is guaranteed because it embeds recovery information
into the data page itself. Although MVBT_OPT also does not
use an external log file, the I/O volume of MVBT_OPT is
slightly higher than that of DHL because of the large number
of B-tree node splits caused by its low page utilization.

3) Block Trace: Figure 9 shows a more detailed analysis of
the I/O traffic to the block device when we run ten transactions,
each of which inserts two records. The y-axis indicates the
LBA (logical block address), i.e., which file is accessed when.
The numbers below each point shows how many consecutive
KBytes are accessed, and the vertical line shows when the last
transaction commits.

In WAL mode, each transaction writes two 4KB WAL frame
pages and an additional 24-byte WAL frame header. As a
result, WAL mode flushes at least three pages (12KB) to
.db-wal file per transaction. Since each transaction increases
the WAL file size, numerous metadata blocks are written to the
EXT4 journal. We note that WAL mode calls fsync() only
once per transaction, i.e., stock WAL mode does not guarantee
the ordering of commit mark and WAL frames. To prevent this
consistency problem, two fsync()s must be called, which
will aggravate the journaling of journal problem. When we
close the database file at the end of the experiments, the
checkpointing process updates the database file (.db), i.e.,
52KB are written to .db file.

In WAL_OPT mode, metadata journaling is completely elim-
inated as we pre-allocate as many dirty pages as the check-
pointing interval. However, due to the initial pre-allocation
overhead, periodic checkpointing overhead, and additional
WAL frame headers, each fsync()/fdatasync() flushes
a larger number of dirty pages than DHL modes.

In DASH mode, two files take turns and flush twice as many
dirty pages (i.e., 24KB) as WAL_OPT, which explains its poor
performance.



(a) WAL (b) WAL OPT (c) DASH

(d) MVBT OPT (e) DHL TC (f) DHL CC

Fig. 9. Block Trace of 10 Insert Transactions (Number at Each Block I/O Point Denotes I/O Size in KB)
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Fig. 10. Operation Throughput Normalized to WAL as the Number of Operations per Transaction is Varied (AVG. of
1000 Mobibench transactions O: OFF OPT, C: DHL CC, T: DHL TC, M: MVBT OPT, W: WAL OPT, S: DASH

Fig. 11. Recovery Time

In MVBT_OPT mode, SQLite does not perform external
logging. Hence, no journal blocks are written to the EXT4
journal. However, MVBT_OPT must guarantee the write order-
ing of a commit mark. Therefore, MVBT_OPT calls fsync()
twice per transaction, one for dirty pages and the other for
the commit mark. Furthermore, due to the additional space
required for multiple versions of records in MVBT, MVBT
splits B-tree pages more frequently and writes a larger number
of dirty pages than journal OFF and DHL modes. In addition
to the low page utilization, MVBT also suffers from garbage
collection. In Figure 9(d), we observe that garbage collection
generates additional I/O (i.e, 36KB at 15 msec).
DHL_TC calls fsync() twice per transaction as in MVBT.

I.e., fsync() is called per 4KB page. Similar to MVBT_OPT,
DHL also avoids updating the database header page and
each transaction updates only two pages, which makes the
performance of DHL_TC similar to that of MVBT_OPT. This
result shows that DHL_TC effectively eliminates the root cause
of the journaling of journal, but through a much simpler
approach than MVBT.

In DHL_CC mode, the counting commit protocol elimi-
nates an extra fsync(). Therefore, Figure 9(f) shows that
fsync() is called per 8KB page as each transaction inserts
two records. Although we do not show the block trace of
OFF_OPT due to the page limit, it is almost identical to that
of DHL_CC.

4) Transaction Size: In the experiments shown in Fig-
ure 10, we vary the transaction size - number of inserts,
updates, and deletes per transaction and show the throughput
normalized to WAL. As we call more query statements in
each transaction, a larger number of pages become dirty and
the overhead of fsync() increases. As a transaction runs

more queries, the performance gap between logging methods
decreases because the relative performance of WAL improves
with a larger number of writes. This is because the filesystem
metadata journaling occurs per transaction, not per operation
and the filesystem metadata journaling overhead is amortized
over multiple operations. However, as we discussed in Sec-
tion III-F, sequential writes have no significant advantage over
random writes due to metadata journaling. It is noteworthy
that WAL_OPT shows up to 2× higher throughput than the
stock WAL mode as it significantly reduces the metadata
journaling overhead. In the experiments shown in Figure 10,
other logging methods except DASH consistently outperform
WAL mode when a transaction writes no more than 16 pages,
which is typical in embedded database systems [7], [11].

When each transaction inserts two data items, the through-
put of DHL CC is up to 33% higher than that of DHL TC
because the counting commit protocol eliminates the extra
fsync(). As a transaction inserts more data items, the
reduced fsync() overhead is amortized over more insertions
and the difference in throughput is reduced.

Throughout the experiments, the throughput of DHL_CC
is consistently similar to that of OFF_OPT. For update
transactions, DHL_CC shows slightly lower throughput than
OFF_OPT because of the defragmentation overhead, which is
purely computational. It is also noteworthy that the perfor-
mance gap between WAL_OPT and DHL_CC widens as the
transaction size increases because checkpointing is triggered
more frequently.
MVBT shows similar throughput with DHL_TC for delete

transactions, but lower throughput than DHL_TC for insert
and update transactions because of low page utilization and
garbage collection overhead.
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Fig. 12. CDF of Latencies Spent for Real Workloads

5) Recovery: In the experiments shown in Figure 11, we
measure the latency for crash recovery. Since database tables
used in mobile apps are often very small [17], [29], we warm
up a database table with 1200 records and then inject a fault
while an insert transaction is running. We vary the number
of inserted records in the faulty transaction from one page to
sixteen pages. When the database is accessed by a subsequent
transaction, each scheme triggers a recovery process.

Our experiments shown in Figure 11 show that when a
transaction aborts while inserting 2, 4, 8, or 16 records of
128 bytes, its recovery takes about 6.3 msec in WAL mode,
which is about 3.5× longer than the recovery latency of
DHL (1.8 msec). The recovery process in WAL mode not
only checkpoints committed transactions but also updates
the inode table and block bitmap for the WAL file. In the
experiments, the number of WAL frames in the log file is
about 455. However, only a small portion of the WAL frames
are checkpointed to the database file because of locality,
i.e., many subsequent transactions access the same database
page. Note that the recovery time in WAL mode takes only
6.3 msec while an auto-commit insert transaction takes about
2.1 msec on average, as shown in Figure 10(a). Although the
recovery overhead of WAL mode is not significant, WAL is
outperformed by other modes, i.e., DASH, MVBT, and DHL.

The recovery time of DHL is even shorter than that of
DASH and MVBT because MVBT checks the version of every
individual record including dead records and DASH has to
reconstruct the shadow file from the database file, but DHL
compares only two transaction IDs against the FCC value.

6) Real Workloads: In the experiments shown in Figure 12,
we measure the transaction latencies of real workloads -
the SQL trace that we collected from representative mobile
applications - Gmail, Facebook, Hangout, and Kakaotalk.
These four SQL traces have different characteristics. As shown
in Figure 1, more than 60% of the queries in Gmail are multi-
operation transactions and the average number of operations
per transaction is 21.9. In Facebook, about 70% of the queries
are select transactions in auto-commit mode, i.e., single select
queries. Hangout also has about 50% single select queries,
but about 20% of the queries are update transactions in auto-
commit mode. In KakaoTalk, an instant messaging app, more
than 50% of the queries are update transactions in auto-commit
mode. Since the logging methods do not affect select query
latencies, we do not show the latencies of select queries in
auto-commit mode, but only present the latencies of select
queries in multi-operation and write transactions. We do not

show the performance of MVBT because the B-tree implemen-
tation in SQLite is tightly coupled with the database engine
and our MVBT implementation fails to process complex real
workloads. Also, we do not show the results of DHL_TC for
easier readability, but note that its latencies are slightly higher
than those of DHL_CC.

Overall, DHL_CC and OFF_OPT show comparable perfor-
mance and they consistently show the best behavior whereas
stock WAL mode and DASH suffer from high tail latency
because of journaling of journal overhead and large I/O traffic.

Although WAL_OPT improves significantly over WAL, it still
falls short of DHL_CC. We note that the presented performance
of WAL_OPT is close to the ideal performance of WAL_OPT
because we let WAL_OPT pre-allocate the number of log
pages necessary for each checkpointing. Note that we do not
want WAL_OPT to pre-allocate a larger number of log pages
than the checkpointing interval because it will unnecessarily
write unused log pages to a block device resulting in in-
creased I/O traffic. In contrast, if we choose to pre-allocate a
smaller number of log pages than the checkpointing interval,
WAL_OPT has to periodically increase the log file size, which
will result in filesystem journaling resulting in increased query
response time due to random writes. In our workloads, the
average checkpointing intervals for Gmail, KakaoTalk, Hang-
out, and Facebook are approximately 84, 147, 23, and 220
pages, respectively. These checkpointing intervals can vary
depending on users’ usage patterns because SQLite triggers
checkpointing if a user closes a mobile app. Therefore, we
varied the number of pre-allocated log pages according to
each app’s average checkpointing interval such that it can
avoid filesystem journaling and benefit from pure sequential
writes. Although the checkpointing interval of SQLite is not
deterministic and there is such a trade-off between filesystem
journaling overhead and unnecessary pre-allocation overhead,
WAL_OPT has to choose a fixed pre-allocation size. However,
with a fixed pre-allocation size, the performance of WAL_OPT
will be worse than those presented in Figure 12.

For the Gmail workload where multi-operation transactions
are dominant and only about 20% of the queries are single
write transactions, the latencies of all logging methods, except
DASH, are similar. This result is consistent with the results
shown in Figure 10. As the transaction size increases, the
performance gap between logging methods decreases.

For the KakaoTalk, Hangout, and Facebook workloads,
where single write transactions are dominant, DHL_CC and
OFF_OPT outperform other logging methods. In particular,



DHL_CC shows superior performance to other logging meth-
ods especially in KakaoTalk. This is because the transaction
size in the KakaoTalk workload is much smaller than the
other workloads, i.e., the average number of operations per
transaction in KakaoTalk is only 1.76 whereas they are 3.99
and 2.98 in Hangout and Facebook, respectively.

V. CONCLUSION

In this work, we proposed a novel metadata-only journaling
scheme for mobile database systems, which we call double-
header logging (DHL). DHL enables in-place updates without
redundant writes caused by external logging or copy-on-write
methods. DHL co-locates minimal recovery information and
data on the same page, thereby avoiding redundant copies
while, at the same time, guaranteeing crash consistency.

Our performance study shows that DHL outperforms WAL
mode, DASH, and Multi-Version B-trees in Samsung Galaxy
7 smartphone. DHL is a write-optimal recovery method in the
sense that the number of calls to write() is no higher than
that of journal OFF mode. Regardless of the underlying file
system, DHL effectively eliminates the need for an external
log file and the root cause of the journaling of journal problem.
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