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Abstract
This extended abstract presents our FAST and FAIR

B+-tree that redesigns insertion, deletion, rebalancing, and
search algorithms such that tree structures can be modified
in a failure-atomic fashion via a series of store and clflush
instructions. We also present the performance of legacy bi-
nary T-tree that we modified for byte-addressable persistent
memory. Our experimental results show the performance of
T-tree is comparable to other state-of-the-art persistent in-
dexes although its implementation is much simpler.

1 Introduction
In the past decades, byte-addressability and persistency
have never been considered together. With the emerging
byte-addressable persistent memory, various studies have
been recently made to leverage the byte-addressability of
block-based data structures while guaranteeing the failure-
atomicity. One of the key challenges in persistent data struc-
tures is that the dirty cache lines in CPU caches can be
flushed to persistent memory at any arbitrary time and the
ordering of store instructions is not guaranteed. Flushing par-
tially updated dirty cachelines and reordering memory writes
can make data structures inconsistent and such transient in-
consistency becomes persistent if a system crashes.

To resolve this problem, various works, including NV-
tree [6], wB+-tree [1], failure-atomic slotted paging [2], and
FP-tree [5], proposed to use append-only update strategies
so that the consistent part of data structures remain unmodi-
fied. However, the append-only update strategy fails to fully
leverage the byte-addressability of persistent memory, i.e.,
the append-only update does not preserve the order of keys.
To the best of our knowledge, none of the previous work
has studied failure-atomic in-place sorting algorithms except
clfB-tree [4]. To in-place update sorted keys, we can make
the tree node size as small as a single cacheline, but it in-
creases the tree height and degrades the search performance.
Alternatively, we can employ copy-on-write or logging as
was done for legacy block device storage, but it increases the
number of calls to expensive cacheline flush instructions.

Another challenge in byte-addressable persistent data
structures arises when we need failure-atomic updates to
multiple cachelines. For example, if a B+-tree node over-
flows or underflows, we need to split or merge multiple tree
nodes to rebalance the tree height. Since it is impossible to
atomically update multiple cachelines in modern hardware
designs, previous works such as NV-tree and FP-tree pro-
posed selective persistence strategy where we store internal
B+-tree nodes in volatile DRAM instead of persistent mem-
ory, such that we do not need failure-atomic rebalancing op-
erations. That is, if a system crashes, internal tree nodes in
volatile memory will be lost. Although the reconstruction of
internal tree nodes is possible, as [6] and [5] claim, recon-
struction of the entire tree structure is expensive and it will
prevent the instant recovery of systems.

2 FAST and FAIR B+-Tree
Instead of the append-only updates and selective persis-
tence, we propose the failure-atomic shift (FAST) and failure-
atomic in-place rebalance (FAIR) algorithms for B+-tree.
The key idea behind these two algorithms is that we can
make read transactions be aware of what changes write trans-
actions are making to a B+-tree.

FAST: In a tree structure, child pointers always have
unique memory addresses. Because of this property, read
transactions can detect and ignore a transient inconsistent
state partially updated by a write transaction. For example,
when we shift pointers in an array of key-pointer pairs, shift-
ing will duplicate pointers in the array. Since such duplicate
pointers are not normal, read transactions can ignore the key
in between duplicate pointers. I.e., we can shift keys and
pointers in a failure-atomic fashion without using logging.

We note that the performance of FAST algorithm is sensi-
tive to the tree node size as it performs more shift operations
as the node size increases. In our testbed, we find 512 Bytes
and 1 KBytes show the fastest performance. When the node
size is set to 4 KB, the insertion time increases by a factor of
3 compared to when the node size is 1 KB.

FAIR: Although updating multiple tree nodes can be
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failure-atomic if we perform copy-on-write or logging, FAIR
algorithm performs in-place updates using a sequence of
store instructions so that it can reduce the number of dirty
cacheline flushes. To ensure the correctness and invariants
of the index, we logically combine two sibling nodes to be
updated using a sibling pointer so that they can be treated
as a single node. Although tree rebalancing operations re-
quire multiple tree node updates, FAIR algorithm controls
the order of store instructions and makes read transactions
be aware of rebalancing-in-transit operations.

If every store instruction in FAST and FAIR algorithms
guarantees that no read transaction will ever access inconsis-
tent tree nodes it is guaranteed that read transaction will al-
ways return the correct results. This observation implies that
FAST and FAIR algorithms enable non-blocking lock-free
search. Although FAST and FAIR algorithms are designed
for byte-addressable persistent memory, we note that they
can be used for volatile DRAM to eliminate the necessity
of read lock (or latches) so that read transactions can be non-
blocking. The details of FAST and FAIR algorithms and how
they enable lock-free search are referred to [3].

3 Failure-Atomic T-Tree for PM
FAST algorithm is not just for B+-tree but it can be used
for any data structure that needs sorted records. T-tree is a
binary index used by various in-memory database systems.
Although T-tree nodes have two child pointers, they can hold
multiple keys in each node when we set the tree node size
to the cacheline size. Since the keys in a T-tree node need
to be sorted, we use the FAST algorithm to shift keys in a
failure-atomic manner. Note that T-tree performs AVL-tree-
like rotation operations to rebalance the tree height. Since the
rotation operations are too complicated to make them failure-
atomic, we decided to use explicit logging. However, we note
that the logging overhead is not very significant because we
do not log the keys but only a few child pointers such that
the log size is kept minimal.

4 Experiments
In the experiments shown in Figure 1, we evaluate the inser-
tion throughput of persistent indexing structures when we in-
dex 10 million records. We emulate the write latency of per-
sistent memory by injecting nop instructions on Intel Xeon
E7-4809 v3 processor. Our experimental results show that
FAST and FAIR B+-trees outperform other state-of-the-art
persistent indexing structures, as was reported in [3].

As for the performance of T-tree, T-tree shows compara-
ble performances to FP-tree and wB+-tree although it is out-
performed by FAST and FAIR B+-tree. We observe that T-
tree accesses a fewer number of cachelines than FAST and
FAIR B+-tree although its LLC miss ratio (38%) is higher
than that of FAST and FAIR B+-tree (29%). Besides this, the
cachelines that T-tree accesses are not adjacent to each other,
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hence it fails to leverage pipelining and memory level paral-
lelism, which explains why it performs worse than FAST and
FAIR B+-tree. Although T-tree performs worse than FAST
and FAIR B+-tree, we note that the implementation of T-tree
is much simpler than FAST and FAIR B+-tree.

5 Conclusions
In this extended abstract, we present FAST and FAIR B+-
tree for byte-addressable persistent memory. FAST and FAIR
B+-tree not only shows superior insertion and range query
performance, but it also enables lock-free search. We also
briefly present the performance of binary T-tree as a novel
contribution, which we believe has a great potential to show
good performance for the next-generation byte-addressable
persistent memory.
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